Phylogenetic analysis of methionine synthesis genes from Thalassiosira pseudonana
نویسندگان
چکیده
Diatoms are unicellular algae responsible for approximately 20% of global carbon fixation. Their evolution by secondary endocytobiosis resulted in a complex cellular structure and metabolism compared to algae with primary plastids. The sulfate assimilation and methionine synthesis pathways provide S-containing amino acids for the synthesis of proteins and a range of metabolites such as dimethylsulfoniopropionate. To obtain an insight into the localization and organization of the sulfur metabolism pathways we surveyed the genome of Thalassiosira pseudonana-a model organism for diatom research. We have identified and annotated genes for enzymes involved in respective pathways. Protein localization was predicted using similarities to known signal peptide motifs. We performed detailed phylogenetic analyses of enzymes involved in sulfate uptake/reduction and methionine metabolism. Moreover, we have found in up-stream sequences of studied diatoms methionine biosynthesis genes a conserved motif, which shows similarity to the Met31, a cis-motif regulating expression of methionine biosynthesis genes in yeast.
منابع مشابه
Positive selection within a diatom species acts on putative protein interactions and transcriptional regulation.
Diatoms are the most species-rich group of microalgae, and their contribution to marine primary production is important on a global scale. Diatoms can form dense blooms through rapid asexual reproduction; mutations acquired and propagated during blooms likely provide the genetic, and thus phenotypic, variability upon which natural selection may act. Positive selection was tested using genome an...
متن کاملInsights into the Regulation of DMSP Synthesis in the Diatom Thalassiosira pseudonana through APR Activity, Proteomics and Gene Expression Analyses on Cells Acclimating to Changes in Salinity, Light and Nitrogen
Despite the importance of dimethylsulphoniopropionate (DMSP) in the global sulphur cycle and climate regulation, the biological pathways underpinning its synthesis in marine phytoplankton remain poorly understood. The intracellular concentration of DMSP increases with increased salinity, increased light intensity and nitrogen starvation in the diatom Thalassiosira pseudonana. We used these cond...
متن کاملCharacterization of the Small RNA Transcriptome of the Diatom, Thalassiosira pseudonana
This study presents the first characterization of endogenous small RNAs in a diatom, Thalassiosira pseudonana. Small RNAs act as transcriptional and translational regulators, controlling specific target genes involved in various cellular functions. Diatoms are unicellular photosynthetic organisms that play major roles in environmental processes, such as food webs and global carbon fixation. Sma...
متن کاملA Gene in the Process of Endosymbiotic Transfer
BACKGROUND The endosymbiotic birth of organelles is accompanied by massive transfer of endosymbiont genes to the eukaryotic host nucleus. In the centric diatom Thalassiosira pseudonana the Psb28 protein is encoded in the plastid genome while a second version is nuclear-encoded and possesses a bipartite N-terminal presequence necessary to target the protein into the diatom complex plastid. Thus ...
متن کاملMetabolic Analysis of Adaptation to Short-Term Changes in Culture Conditions of the Marine Diatom Thalassiosira pseudonana
This report describes the metabolic and lipidomic profiling of 97 low-molecular weight compounds from the primary metabolism and 124 lipid compounds of the diatom Thalassiosira pseudonana. The metabolic profiles were created for diatoms perturbed for 24 hours with four different treatments: (I) removal of nitrogen, (II) lower iron concentration, (III) addition of sea salt, (IV) addition of carb...
متن کامل